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S1 Dengue transmission model description

We developed a model of dengue transmission that represents individual infected mosquitoes (Sec-
tion S1.1) and human hosts (Section S1.2). Section S1.3 describes how dengue is transmitted between
humans and mosquitoes and vice versa. The model runs in discrete time in one-day time steps. Typically,
the model is run for a single year, but it can be run for multiple years as described in the Materials and
Methods section in the main text. The model was written in C++ (GNU Compiler Collection version
4.6.3 for 64-bit x86) and uses the GNU Scientific Library for random number generation (GSL-1.15,
available at http://www.gnu.org/software/gsl/). We used the R statistical computing software version
2.14.1 for data analysis and plotting [1].

S1.1 Mosquito model

The lifespan of a mosquito affects its ability to acquire and transmit dengue. We assume that mosquitoes

have a lifespan determined by a hazard function [6]. The hazard function is logistic: H(t) = aebt

1+ as
b (ebt−1) ,

Table S1.1. Model parameters.

Parameter value source
mean incubation period 6.0 days [2]
symptom onset 0–2 days [2, 3]
viremic period 4–5 days [2]
symptomatic fraction varies by age [4]
symptomatic infectiousness unknown —
days of complete cross-immunity
after recovery

120 days —

extrinsic incubation period 11 days [2]
mean mosquito lifespan 18 day mean Section S1.1
Bt, biting time distribution 0.08,0.76,0.16 [5]
daily probability of mosquito mi-
gration

0.15 Section S2.1

βPM 0.1 person-to-mosquito transmission (Section S2.1)
βMP 0.25 mosquito-to-person transmission (Section S2.1)
VES 0.5–0.9 —
VEP 0, 0.5 —
VEI 0, 0.5 —
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Figure S1.1. Simulated mosquito lifespan. (A) Female Aedes aegypti mortality, from [6]. (B) A
survival curve derived from the hazard.

where a = 0.0018, b = 0.1416, s = 1.0730 for female Aedes aegypti (Figure S1.1). These estimates are for
caged mosquitoes, and mosquitoes in the wild may have shorter lifespans due to predation. The model’s
dengue dynamics were calibrated using the caged mosquito estimates. We created a survival function
based on the discretized hazard. By assuming the maximum age is 60 days, we compute the steady state
age distribution of living (female) mosquitoes.

We assume that each building in the model has the capacity to maintain a certain number of
mosquitoes, which could correlate with the number of breeding sites. The number of mosquitoes (per
building) fluctuates according to a seasonality function that can change weekly (Section S2.4). In the
absence of viremic humans, the mosquitoes remain susceptible and are represented as a population per
building rather than as individual, mobile mosquitoes.

We define the vector Bt to be how much mosquitoes prefer to bite at different times of day, where t is
a portion of a single day. We use the female biting behavior in the rainy season in Thailand to estimate
Bt: 8% of biting takes place in the first two hours of the day (before 9am), 76% of biting takes place
between 9am and 5pm, 13% takes place between 5pm and sunset, and 3% of biting takes place after
sunset [5]. We assume that this distribution reflects the mosquito’s feeding time preferences rather than
the availability of hosts.

Infected mosquitoes are represented as mobile, individual agents that are generated in buildings with
infected humans. For each building, we calculate fv, the fraction of people who are viremic weighted by Bt,
based on when each individual is present, to account for mosquito biting time preferences (Table S1.1). We
draw from the binomial distribution B(n, βPMfv) to determine the number of mosquitoes to be infected at
that location in a day. βPM is the daily probability that a susceptible mosquito bites a human multiplied
by infectiousness. The infecting serotype is drawn from the distribution of serotype frequencies at that
location, also weighted by Bt. Thus, individuals who are in the building when the mosquitoes prefer to
bite are most likely to infect the mosquitoes. Also, if there are more uninfected individuals, it is less likely
that a mosquito will become infected. The age of the newly infected mosquito is drawn from the pre-
calculated age distribution of uninfected mosquitoes, A, as described above. We also draw the mosquito’s
age of death by drawing from the age distribution of mosquitoes older than itself. The building where
the mosquito was infected has one less susceptible mosquito until the newly infected mosquito’s death.
The newly infected mosquito enters the “exposed” state for an extrinsic incubation period of exactly 11
days until becoming infectious [2] (Figure 1A). After the extrinsic incubation period, exposed mosquitoes
become infectious, and can infect susceptible humans in the model. Infectious mosquitoes potentially
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Figure S1.2. Locations in the Bang Phae model are linked by a Delaunay triangulation. In this
plot, which covers 1km2, workplaces are indicated by red W’s, schools by green S’s, and homes by gray
circles. The solid gray lines connect neighboring locations, defined by the triangulation, and are the
routes along which mosquitoes travel. The schools are modeled as tight clusters of classroom locations,
and the green S in the plot is actually six adjacent primary school classrooms, each associated with
about 30 children and one adult. The Voronoi diagram is shown as gray dotted lines. Each location is
surrounded by a Voronoi “cell” defined by these lines, and each cell can be considered to be the
territory of mosquitoes occupying the location.

transmit dengue with the probability of βMP per day. This parameter is conceptually the product of a
daily biting frequency and the mosquito-to-human transmissibility. Thus, βMP is the daily probability
of transmission per infectious mosquito in a fully susceptible human population. In the model, each
mosquito delivers an “infectious” bite with the probability of βMP each day, at which point a randomly
selected individual at the mosquito’s location, weighted by the amount of time each individual spends at
that location, is infected if and only if that person is susceptible.

Infected mosquitoes are mobile in the model. In the model, each infected mosquito is associated with
a single building, which may be a household, workplace, or school, and they may migrate to adjacent
buildings with a probability of 0.15 per day (Section S2.1) and to a randomly chosen building with a
probability of 0.01 to account for sporadic long-range travel in a manner similar to the model in [7]
(Figure 1C). Adjacency among buildings is determined using a Delaunay triangulation implemented in
R’s deldir package [1]. There are a total of 60,126 locations. As a consequence of traveling along this
network, mosquitoes will only travel short distances in densely populated areas and longer distance in
sparser areas, which was observed in [8]. See Figure S1.2 for an illustration of the triangulation.
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Figure S1.3. Distribution of intrinsic incubation periods. Data from [2].

S1.2 Human model

Individual humans have a fixed daily pattern of movement in the model. Because we are interested in
dengue transmission, we only model the daytime behavior of humans, when A. aegypti are biting. We
divide the day into three portions: morning (before 9am), the work day (between 9am and 5pm), and
early evening (after 5pm). People will be assigned locations (e.g., home, work, school, temple) for each
of these time slots. We assume that people spend their mornings and early evenings at home and go
to work (if “employed”) or school during the day. Symptomatic individuals might stay at home during
the day, as described in Section S1.4. Based on http://web.nso.go.th/en/survey/timeuse/time use.htm,
people in Thailand are generally at home eating between 7-8AM and 6-7PM. This gives us a good idea
of when people are at home, assuming they take their morning and evening meals at home.

S1.3 Dengue natural history and the effect of vaccine

Susceptible people in the model are infected when they are bitten by an infected mosquito, as described
in Section S1.1. The probability that an individual is bitten is determined by the proportion of time they
spend in buildings with infected mosquitoes. Once a human is infected, we draw incubation periods from
an empirical distribution (Figure S1.3) derived from observations of DENV-1 challenge studies from the
US Army in the Philippines [2].

We assume that symptoms begin 1 day after infectiousness, which was observed in a study of DENV-
4 [2]. Infectiousness lasts 5 days, which is consistent with [2] in which infectiousness is high from 1 day
before to 3 or 4 days after fever onset. We assume that infectious individuals have a constant level of
infectiousness, regardless of serotype or prior heterologous exposure. Secondary infections (i.e., infections
after exposure to one or more serotypes) are assumed to have the same rates of causing dengue fever
as primary infections (but higher rates of severe cases, see Section S1.4), and viremia during secondary
infections resolves one day faster than during primary infections in the model (3 days after symptom
onset instead of 4) [9].

Symptomatic individuals may choose to stay home for the remaining duration of illness with a 50%
probability per day, starting with the first day of symptoms. See Section S1.4 for a description of who
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becomes symptomatically infected in the model. Hospitalization is not represented in the model, and
the number of hospitalizations can be estimated by taking a fraction of the primary and secondary
symptomatic individuals at the end of a simulation run.

Vaccine-induced protection is modeled as having three components as described in [10]. VES is the
probability that a vaccine will confer immunity against infection, VEP is the reduction in the probability of
becoming symptomatic given infection, and VEI is the reduction in infectiousness. The simulated vaccine
provides the same level of protection against all 4 serotypes. In the model, vaccine confers all-or-none
protection, so that a fraction of those vaccinated (i.e., VES) can not be infected by any serotype. In
Section S4, we relax this assumption in a sensitivity analysis.

We assume that naturally acquired infection also grants immunity. In the model, infected individuals
acquire sterilizing immunity to the infecting serotype and complete but brief (120 days) cross-immunity
to other serotypes after recovery from infection
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S1.4 Pathogenicity of dengue

During primary infection with DENV-1, the risk of symptomatic dengue (uncomplicated dengue fever)
increases with age [4]. We use the data from [4] to compute pathogenicity for DENV-1 and DENV-3
infections in individuals in the model, with adults having a 100% symptomatic fraction (Figure S1.4).
We assume that secondary infections have the same probability of producing a case of dengue fever as
primary infections.

Primary infection with serotypes 2 and 4 are mostly inapparent, while infection with 1 and 3 are more
often symptomatic [11,12]. The DENV-2 strain circulating in Cuba in 1997 appeared to be asymptomatic
in näıve individuals [13]. In the model, we assume that DENV-2 and DENV-4 are less pathogenic than
DENV-1 and DENV-3 and use a rescaled version of the age-specific pathogenicity curve with pathogenicity
peaking at 30% in näıve adults rather than 100%.

After a simulation is run, we compute the number of dengue-related hospitalizations based on the
number of infections. We assume that hospitalizations are due to secondary (heterologous) infections.
Therefore, we count the number of simulated heterologous infections, then use age-specific estimates of the
number of DHF/DSS-related hospitalizations per secondary infection from [14], as shown in Figure S1.5.
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Figure S1.4. Relative risk by age of developing dengue fever (becoming symptomatic) after
infection by DENV-1 in a näıve population. Data from [4].
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Figure S1.5. Risk of DSS/DHF hospitalization per 100 secondary infections. Data from [14].
Estimates for ages less than 3 are assumed to be the same as the estimate for age 3. Estimates for ages
greater than 65 are assumed to be the same as that for age 65.
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Figure S1.6. Synthetic population demographics. (A) The distribution of ages by gender in the
synthetic population based on Ratchaburi. Males are in blue, females in red. (B) The distribution of
household sizes.

S1.5 Synthetic population for Bang Phae, Ratchaburi, Thailand

The Bang Phae district in Ratchaburi is semi-rural, and consists of 7 sub-districts (Bang Phae, Don
Kha, Don Yai, Hua Pho, Pho Hak, Wang Yen, and Wat Kaeo), 65 villages, and 49,506 residents (11,472
households). To make the model specific to the site, we use population density, family structure, mobility
data, mosquito population seasonality, and cultural factors.

We create a synthetic population for a rectangular area around the district, from 13°35′–13°45′N and
99°50′ – 100°5′E, which is 20×30 km. We use population density estimates from GRUMP [15], which has
estimates at a 1km2 resolution (Figure 1B). In the synthetic population, we randomly place households
within each 1km2 grid cell to match the GRUMP data. Households are drawn from the Integrated Public
Use Microdata Series, International, (IPUMSI) database [16]. These data contain the ages and genders
of members of 2040 households sampled in Ratchaburi from the 2000 Census. The synthetic population
has 207,591 individuals (Figure S1.6), which is close to the 207,437 residents according to GRUMP.

We model the school structure in the manner described in [17] for rural Thailand. All children from 5
to 10 years old go to elementary school. In our synthetic population, this is 21,259 children. We create 182
elementary schools in order to have an average school size of 117 students. We place 50% of elementary
schools within 100 meters (using an L1 norm) of randomly selected homes, so that there are more schools
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where there are more people, and the remaining 50% randomly across the whole area. We assume that
83% of the 14,727 children from 11 to 14 go to one of the 129 lower secondary schools (average size 95).
We assume 58% of the 9,855 children from 15 to 17 go to one of the 83 upper secondary schools (average
size 69). We place half of these schools near homes and half randomly, as we do for elementary schools.
We assign the stated fractions of children of the appropriate ages to the nearest school.

According to census data, classrooms have about 20-35 students (http://web.nso.go.th/topten/305.htm
and http://web.nso.go.th/topten/303.htm). All schools that are large enough are split into classrooms of
about 30 students. More specifically, we set the number of classrooms in a school by dividing the number
of students by 30 and rounding and also requiring at least one classroom per school. If a school requires
more than one classroom, the appropriate number of classrooms are created within a 10x10 area around
the original school, and students are randomly divided among the classrooms. One adult is assigned per
classroom, as described below.

We assign activities for the adults and the children who don’t go to school using the procedure
described below:

1. The oldest female (who is 15 or older) in each household with children 5 years old and younger
stays home during the day (i.e., their workplace is their home). There are 19,352 children 5 and
under in 15,799 households. Most of these households (15,554) have a qualified female, who stays
home with the child. The remaining children 5 and under (in the remaining 245 households) are
unsupervised at home.

2. For each classroom, one adult between 21 and 64 who live within 2km is randomly selected to work
there.

3. Of the remaining individuals from 12–64 years old, some fraction (70%) will be assigned to work
outside the home. We use a gravity model to determine how far employed individuals travel to go
to work [18, 19]. To determine the distribution of destinations for workers in a given community,
we use the following formula from [19]:

Cij = θ
P τ1i P τ2j
dρij

(1)

where Cij is the workflow from cell i to j, dij is the distance between i and j, Pi is the population of
community i, θ is a proportionality constant, and τ is used to tune the dispersal. Each cell is a 1km2

square. Based on [19], we set τ1 = 0.30 and τ2 = 0.64. To reflect the lower mobility of semi-rural
Thailand, we set ρ = 3.8 based on the estimate in [18]. We assume that 30% of individuals work
in the same 1km2 cell where they live, and the rest are distributed according to the gravity model.
The appropriate number of workplaces are placed randomly within each 1km2 cell.

4. Everyone who is not assigned work or school stays home all day.
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